Time domain analysis of capacitor voltage self-balance mechanism Part 2

This article analyzes the characteristics of the current ix(t) and its average value Ix(avg) from the midpoint of the capacitor arm when Vd=0 and Vd≠0. (1) Vd=0 Vd=0 means that the capacitor voltage is balanced. At this time, iinv(t) is denoted as iinv_b(t), and its expression is: Among them, φZmn is the impedance angle of Zeq, and […]

Read More

Time domain analysis of capacitor voltage self-balance mechanism Part 1

The self-balancing characteristics of the half-bridge inverter can also be analyzed in the time domain. First, analyze the time constant τ of the capacitor voltage stability in the time domain, so as to qualitatively understand the self-balancing characteristics of the capacitor voltage; then, according to the two-variable Fourier decomposition, the factors of the capacitor voltage […]

Read More

Frequency domain analysis of capacitor voltage self-balance mechanism

According to the equivalent circuit of the 3L-NPC half-bridge inverter, the relationship between the capacitor current and the capacitor voltage difference is first analyzed from the perspective of frequency domain and time domain. Before the analysis, first assume that the capacity of the DC side capacitors Cdc1 and Cdc2 is large enough, the ripple amount of the […]

Read More